Deep and low-level feature based attribute learning for person re-identification
نویسندگان
چکیده
منابع مشابه
Deep-Person: Learning Discriminative Deep Features for Person Re-Identification
Recently, many methods of person re-identification (ReID) rely on part-based feature representation to learn a discriminative pedestrian descriptor. However, the spatial context between these parts is ignored for the independent extractor on each separate part. In this paper, we propose to apply Long Short-Term Memory (LSTM) in an end-to-end way to model the pedestrian, seen as a sequence of bo...
متن کاملScience Deep learning for person re - identification
Person re-identification is the task of ranking a gallery of automatically detected images of persons using a set of query images. This is challenging due to the different poses, viewpoints, occlusions, camera configurations, image distortions, lighting conditions, image resolutions and imperfect detections, which all affects a person re-identification system’s performance. Recently deeply lear...
متن کاملDeep Transfer Learning for Person Re-identification
Person re-identification (Re-ID) poses a unique challenge to deep learning: how to learn a deep model with millions of parameters on a small training set of few or no labels. In this paper, a number of deep transfer learning models are proposed to address the data sparsity problem. First, a deep network architecture is designed which differs from existing deep Re-ID models in that (a) it is mor...
متن کاملJoint Learning for Attribute-Consistent Person Re-Identification
Person re-identification has recently attracted a lot of attention in the computer vision community. This is in part due to the challenging nature of matching people across cameras with different viewpoints and lighting conditions, as well as across human pose variations. The literature has since devised several approaches to tackle these challenges, but the vast majority of the work has been c...
متن کاملImproving Person Re-identification by Attribute and Identity Learning
Person re-identification (re-ID) and attribute recognition share a common target at the pedestrian description. Their difference consists in the granularity. Attribute recognition focuses on local aspects of a person while person re-ID usually extracts global representations. Considering their similarity and difference, this paper proposes a very simple convolutional neural network (CNN) that l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Image and Vision Computing
سال: 2018
ISSN: 0262-8856
DOI: 10.1016/j.imavis.2018.09.001